Periodic nonuniform sampling in shift-invariant spaces

نویسندگان

  • Jeffrey A. Hogan
  • Joseph D. Lakey
چکیده

This paper reviews several ideas that grew out of observations of Djokovic and Vaidyanathan to the effect that a generalized sampling method for bandlimited functions, due to Papoulis, could be carried over in many cases to the spline spaces and other shift-invariant spaces. Papoulis’ method is based on sampling output of linear, time-invariant systems. Unser and Zerubia formalized Papoulis’ approach in the context of shift-invariant spaces. However, it is not easy to provide useful conditions under which the Unser-Zerubia criterion provides convergent and stable sampling expansions. Here we review several methods for validating the Unser-Zerubia approach for periodic nonuniform sampling, which is a very special case of generalized sampling. The Zak transform plays an important role.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonuniform Sampling and Reconstruction in Shift-Invariant Spaces

This article discusses modern techniques for nonuniform sampling and reconstruction of functions in shift-invariant spaces. It is a survey as well as a research paper and provides a unified framework for uniform and nonuniform sampling and reconstruction in shiftinvariant spaces by bringing together wavelet theory, frame theory, reproducing kernel Hilbert spaces, approximation theory, amalgam s...

متن کامل

Local reconstruction for sampling in shift-invariant spaces

The local reconstruction from samples is one of most desirable properties for many applications in signal processing, but it has not been given as much attention. In this paper, we will consider the local reconstruction problem for signals in a shiftinvariant space. In particular, we consider finding sampling sets X such that signals in a shift-invariant space can be locally reconstructed from ...

متن کامل

O ct 2 01 7 SAMPLING THEOREMS FOR SHIFT - INVARIANT SPACES , GABOR FRAMES , AND TOTALLY POSITIVE FUNCTIONS

We study nonuniform sampling in shift-invariant spaces and the construction of Gabor frames with respect to the class of totally positive functions whose Fourier transform factors as ĝ(ξ) = ∏n j=1(1 + 2πiδjξ) −1 e 2 for δ1, . . . , δn ∈ R, c > 0 (in which case g is called totally positive of Gaussian type). In analogy to Beurling’s sampling theorem for the Paley-Wiener space of entire functions...

متن کامل

Sampling Theorems for Shift-invariant Spaces, Gabor Frames, and Totally Positive Functions

We study nonuniform sampling in shift-invariant spaces and the construction of Gabor frames with respect to the class of totally positive functions whose Fourier transform factors as ĝ(ξ) = ∏n j=1(1 + 2πiδjξ) −1 e 2 for δ1, . . . , δn ∈ R, c > 0 (in which case g is called totally positive of Gaussian type). In analogy to Beurling’s sampling theorem for the Paley-Wiener space of entire functions...

متن کامل

Shift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups

We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005